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Received 19 November 1997

Abstract. Recently there has been a revival of interest in gauge theories withdisconnected
compact gauge groups. Gauge fields such that this disconnectedness has non-trivial physical
effects are called Alice configurations. The question of the existence of such configurations is
surprisingly intricate, and no complete theory is known. Here we give some simple techniques
for establishing the existence of Alice configurations, with an emphasis on practical, readily
verifiable conditions requiring a minimum of topological information on the base manifold and
the gauge group.

1. Introduction

The idea that gauge groups need not be connected—that they can, in physical parlance, be
‘discrete’—dates back to the work of Kiskis [1]. It arose again in connection with the theory
of vortices and cosmic strings [2, 3], and then in studies of the role of discrete symmetries
in quantum gravity [4, 5]. More recently, the fundamental importance of discrete gauge
groups was explicitly recognized in several deep studies of quantum hair on black holes
[6, 7]. Yet again, ‘statistical hair’ [8] is described as a type of ‘discrete gauge hair’.

Discrete gauge effects can originate in several different ways, a fact explained with great
clarity by Colemanet al [6]. Discrete gauge symmetries can make their presence felt very
directly if the theory in question is defined on a manifold which is not simply connected,
and this is the case we shall consider here. (Our results after section 2 are therefore not
relevant, for example, to the gauge configurations considered by Schwartz [2] which are
defined on ordinary Minkowski space.) The manifold need not be the four-dimensional
spacetime manifold: string and brane theories provide numerous opportunities for non-
simply-connected internal spaces to play a role. Parallel transport around non-contractible
loops can lead to quite extraordinary physical effects. For example, in an ‘Alice universe’
[7] a journey around such a loop can convert matter to anti-matter. A question now arises,
however: given a specific non-simply-connected manifoldM, how can a non-trivial discrete
gauge configuration actually be constructed? For example, the Alice universe involves the
group Pin(2). Suppose that the topology of spacetime isR× RP 3, whereRP 3 is the real
projective 3-space: how do we determine whether a non-trivial Pin(2) gauge configuration
exists on this spacetime? (In fact, as we shall see,it does not.) The objective of this
work is to give some techniques for constructing non-trivial discrete gauge configurations
over specific non-simply-connected manifolds and also to discuss some examples where this
cannot be done. This will also involve a study of the structure ofdisconnectedcompact
Lie groups.
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Given a compact connected Lie groupG0, we can easily find examples of disconnected
groups withG0 as the identity component: indeed, it is all too easy to find them. For ifF

is any finite group, thenF ×G0 is such a group. This complicates the problem of giving
a meaningful classification; however, in section 2 we give a very simple approach which
is nevertheless adequate for our purposes. GivenG0, we assign a compact disconnected
group withG0 as identity component to one of three classes, according to the relationship
between the ‘discrete’ and the ‘continuous’ parts of the group.

However, it is clear that merely extending a group in this way hardly permits us to
claim that the corresponding discrete symmetries have been ‘gauged’. For that, we need to
establish the existence of gauge configurations such that parallel transport actually involves
elements of the group outside the identity component. In geometric language, the question is
this: given a connected manifoldM and a (not necessarily connected) compact Lie groupG,
can we find a principal bundle overM with a connection havingholonomy groupisomorphic
to G? If the bundle is required to be the bundle of orthonormal frames over a Riemannian
manifold, and if the torsion form is required to vanish, then this question leads to the
celebrated Berger classification [9]. For compact,simply-connectedM, our question has
finally been completely answered in this special case by the work of Joyce [10, 11], though
the non-simply-connected case has only been settled for compact manifolds of positive Ricci
curvature [12]. Here, however, we shall allow the bundle to be anarbitrary gauge bundle.
In this case, ifG is connected, then our question has a very simple answer: subject to mild
conditions onM, any connectedG occurs as the holonomy group of a connection on some
bundle overM. (This is a consequence of the Hano–Ozeki–Nomizu theorem [13], which
we shall use extensively.) However, ifG is disconnected, it often cannot be represented as
a holonomy group over a givenM even if we allow arbitrary bundles. The veryexistence
of non-trivial discrete gauge configurations is thus problematic.

It is intuitively clear that a disconnected group cannot occur as a holonomy group over
a simply-connected manifold. There must be a match between the size of thefundamental
group of M and the number of connected pieces comprisingG. This observation can be
made precise and formulated as a very simple condition onM which must be satisfied if
G is to occur as a holonomy group overM. Physical intuition suggests that this matching
condition, which we call theholonomy covering condition, should be sufficient as well as
necessary. This is indeed true in many (but not all) cases; a large class of such cases is
described in section 3.

The elementary approach of section 3 fails for some groups. Of these, some can be
treated by constructing a special type of function which we call anantipodal function.
This technique is explained in section 4. Another approach is to impose onM a covering
condition stronger than the holonomy covering condition; this is described in section 5.
Still another approach is given in section 6. Nevertheless there remain some disconnected
groupsG and base manifoldsM such that all of these techniques fail to allow us to construct
a bundle overM having a connection with holonomy group isomorphic toG, even ifM
satisfies the holonomy covering condition. This leads to the suspicion that, for someM

satisfying the holonomy covering condition, theredoes notexist any principal bundle with
a connection having holonomy group isomorphic toG. This suspicion is confirmed in
section 7; we present many examples of just this kind, where the holonomy covering
condition definitely fails to be sufficient. This leads to some surprising conclusions: for
example, while Pin(3) occurs as a holonomy group over the real projective spaceRP 3, its
subgroup Pin(2) does not. Again, Pin(2) can be a holonomy group on a bundle over the
group manifoldSO(6)/Z2, but not on any bundle overSO(6) itself, thoughSO(6) satisfies
the holonomy covering condition for Pin(2).



Methods of Alice physics 3609

Some readers will be aware that some of the issues being discussed here can be
formulated in a much more sophisticated way, in terms of obstruction theory. Unfortunately,
that approach requires a great deal of information on the topology of the base manifoldM

and the gauge groupG (involving certain cohomology groups ofM with coefficients twisted
by homotopy groups ofG). In practice, no single technique is adequate to handle allM and
all G. Our emphasis here is on relatively elementary techniques which the reader can easily
adapt to high-dimensional base manifolds and gauge groups with complicated topologies
(such as the standard group), for which the relevant obstruction classes can be very difficult
to obtain. For example, our methods can easily handle the specific case of anSO(10)
grand unified theory, breaking to various physically interesting subgroups, defined onany
homogeneous, locally isotropic cosmological model inarbitrarily high dimensions. Again,
Anandan [14] has recently discussed quantum mechanics in Alice cosmologies, and our
methods immediately establish the existence of the corresponding gauge configurations.

We begin by describing a simple structure theory for disconnected compact Lie groups.

2. Disconnected compact Lie groups

A general theory of disconnected compact Lie groups, concentrating on the semi-simple
case, has been given by de Siebenthal [15]. However, the following considerations suffice
for our purposes. For any Lie groupG, the connected component containing the identity,G0,
is a normal subgroup, andG can be expressed as a disjoint union of connected components

G = G0 ∪ c1 ·G0 ∪ c2 ·G0 ∪ · · ·
whereci are not elements ofG0. The number of components is finite if, as we assume
henceforth,G is compact. Note that, for eachi, Ad(ci), which is a conjugation byci , is an
automorphism ofG0.

Now let G1 be the subgroup ofG consisting of allg such that Ad(g) is an inner
automorphism ofG0. Let g be any element ofG1, and let k be any element ofG;
then since the inner automorphisms are normal in the group of all automorphisms ofG0,
Ad(k)Ad(g)Ad(k−1) is inner, and thuskgk−1 is an element ofG1. Hence the latter is
normal inG, and we have a natural coset decomposition

G = G1 ∪ k1 ·G1 ∪ k2 ·G1 ∪ · · ·
where each Ad(ki) is outer onG0. Note that if Ad(ki) = Ad(kj ) modulo an inner
automorphism, thenki ·G1 = kj ·G1, so there can be no more terms in this decomposition
than there are elements in the outer automorphism group ofG0.

Given any groupG, and subgroupsA andB, the set of all productsA ·B, is a subgroup
if A ·B = B ·A. LetK be the group generated byki above: then we haveG = K ·G1. Note
thatK andG1 may have a non-trivial intersection, and also that the structure ofK depends
on the choice ofki . This last observation means that, in writingG = K ·G1, we are giving
a specificpresentationof G. We shall resolve this ambiguity here by giving aspecific, fixed
choiceof ki for eachG0; but the reader should bear in mind that the presentations we give
are not unique. This is not a matter of concern in practice.

ForG1, we have

G1 = G0 ∪ h1 ·G0 ∪ h2 ·G0 ∪ · · ·
where each Ad(hi) is inner onG0; hencehi can be chosen so as to commute with every
element ofG0, and we shall always choose them in this way. IfH is the group generated
by some specific set ofhi , then we haveG1 = H · G0, where againH may intersectG0

non-trivially (in its centre).
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To summarize then, all of the complications in the structure of a compact disconnected
Lie groupG arise either from the existence of outer automorphisms ofG0, or from non-
trivial intersections ofK orH with the centre ofG0. Thus ifG0 is the exceptional groupE8,
which has no outer automorphisms and a trivial centre, then the only compact disconnected
groups withE8 as their identity component are direct products of finite groups withE8. For
E7 the situation is slightly more complex, sinceE7 has a centre isomorphic toZ2, while
E6 is still more complicated, since its centre isZ3 and it has outer automorphisms.

These considerations lead to the following classification. It is a classification of
presentationsof disconnected compact Lie groups: that is, we suppose that generators
of K andH are specified and fixed. (The classification is thusnot a precise classification
of G according to its abstract isomorphism class. For our purposes, the classification of
presentations is more useful.) There are three types.

Type I:K is trivial. HereG = G1 = H · G0, with each element of the finite groupH
commuting with every element ofG0. If G0 has no outer automorphism, then everyG is
of this kind: this is the case for Spin(n) andSO(n) whenn is odd, for all of the symplectic
groups Sp(n), and for all of the exceptional groups other thanE6. Note that every finite
group is of this type (takeG0 trivial) and so is every compact connected group (takeH

trivial). As we have emphasized the only complication here is the possibility of a non-trivial
intersection ofH with the centre ofG0. For example, letG0 = SU(2) and letH = Z4,
generated byz such thatz commutes with every element ofSU(2), andz2 = −I2, where
In is the (n × n) identity matrix. ThenZ4 andSU(2) intersect in{±I2}, andZ4 · SU(2)
is a group with two (not four) connected components. This group isnot isomorphic to
Z2 × SU(2), which shows the need for caution even in these simple cases. (This group
occurs as the linear holonomy group of any Enriques surface [9] endowed with a Yau
metric.)

Type II:K 6= {e}, K ∩G0 = {e}. Heree is the identity element ofG. In this caseK is not
trivial, but there are no complications due to non-trivial intersections withG0. The most
important examples here arise from the unitary groupsU(n), the Spin groups Spin(2n), the
special orthogonal groupsSO(2n), and the exceptional groupE6. Consider, for example,
the orthogonal groupsO(2n), which we present as follows. For each integern, let A2n be
the ((2n)× (2n)) diagonal matrix

A2n = diag(−1, 1, 1, 1 . . .) n even

A2n = diag(1,−1, 1,−1, . . .) n odd

so that detA2n = −1 for all n. Then Ad(A2n) is an outer automorphism ofSO(2n), and
O(2n) = SO(2n)∪A2n · SO(2n); clearlyK is just {I2n, A2n}, andI2n is the only common
element ofK and SO(2n). ThusO(2n) is of type II. Similarly, U(n) is the identity
component of a type II group, with two components, which is a semi-direct product of
U(n) with Z2 (the relevant outer automorphism in this case being complex conjugation).
Another example of this type is the following: the grand unification group [16] Spin(10)
contains the colourSU(3) and an elementγ of order 4 such that Ad(γ ) induces complex
conjugation onSU(3), but γ 2 is not an element ofSU(3). HereK = Z4, andH is the
Z2 subgroup ofZ4; K intersectsSU(3) trivially, and G is a group, with four connected
components, of type II. (This is the gauge group of ‘Alice chromodynamics’ in the context
of Spin(10) grand unification.)

Type III:K 6= {e},K∩G0 6= {e}. The groups of this type involve both kinds of complication,
and they are the ones which present the most serious difficulty in holonomy theory. The
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key example here, both physically [7] and geometrically, is the group Pin(2), the non-trivial
double cover of the orthogonal groupO(2). Let e1 ande2 generate the Clifford algebra on
R2; then Ad(e1) is an outer automorphism of Spin(2), and(e1)

2 = −1, so that if we present
Pin(2) as

Pin(2) = Spin(2) ∪ e1 · Spin(2)

thenK = Z4 andK ∩G0 = {±1}. Thus Pin(2) is of type III.
There are three ways to generalize this example. The first is to consider

Pin(2n) = Spin(2n) ∪ e1 · Spin(2n)

for all n > 1. The second way is to recall that Spin(2) is isomorphic to the unitary group
U(1). Let αn be such that Ad(αn) induces complex conjugation onU(n), andα2

n = −In;
then

Z4 · U(n) = U(n) ∪ αn · U(n)
is a group of type III with two connected components. ClearlyZ4 · U(1) = Pin(2). Third,
we can regardO(2n), in the presentation given earlier, as the real subgroup ofU(2n) and
note that the matrices iA2n all belong toU(2n). Then the groups

Z4 · SO(2n) = SO(2n) ∪ iA2n · SO(2n)
are two-component subgroups ofU(2n) of type III. Again, recalling that Spin(2) = SO(2),
we verify thatZ4·SO(2) = Z4·U(1) = Pin(2). Summarizing, we have in Pin(2n),Z4·U(n)
andZ4 · SO(2n), three infinite families of groups of type III, all three having Pin(2) =
Z4 · U(1) = Z4 · SO(2) as their only common member.

When considering the holonomy theory of type III groups, we shall concentrate our
attention on these three families, for the following reasons. Recall that any compact
disconnected group has the formG = K ·G1, G1 = H ·G0. If G is a holonomy group of a
connection in some gauge bundle, thenK will have a clear physical significance: since, for
eachki , Ad(ki) has a non-trivial effect on maximal tori inG0, parallel transport involving
K will affect some of the charges of the theory, this being the distinctive property of Alice
gauge configurations. However, parallel transport involvingH has no such effect and so
the physical significance ofH is not clear. IfH is trivial, thenG is called [15] anatural
extensionof G0. Now de Siebenthal shows [15] that the only natural extensions ofSO(2n)
areO(2n) andZ4 · SO(2n) and that the only natural extensions of Spin(2n) (except when
n = 4, where triality leads to further groups, all of type II) are Pin(2n) and a type II group
of the formZ2 ·Spin(2n); and similarly one can prove thatZ2 ·U(n) andZ4 ·U(n) are the
only natural extensions ofU(n). Thus, there are good physical and mathematical reasons for
concentrating on Pin(2n), Z4 ·U(n) andZ4 ·SO(2n). In fact, of these, Pin(2n) andZ4 ·U(n)
are of most interest in physics, since they (and similar groups) occur naturally as subgroups
of spin groups. For example, Pin(2) arises in the work of Preskill and Krauss [7] as a
subgroup of Spin(3), and the electromagnetic subgroup of the Spin(10) grand unification
group may be regarded as the identity component of a certain Pin(2) subgroup of Spin(10).
(WhenSO(n) is mentioned in the physics literature, Spin(n) is usually intended.) In short,
one should think of Pin(2) as the natural ‘disconnected version’ ofU(1) and of Pin(2n)
andZ4 · U(n) as generalizations of Pin(2).

3. The holonomy covering condition and types I and II

Let P be a principal fibre bundle with structural groupG over a connected base manifold
M, and suppose that there is a connection onP with the holonomy group isomorphic toG.
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There is a natural homomorphism [13] from the fundamental groupπ1(M) ontoG/G0, so
π1(M) has a normal subgroupN such thatπ1(M)/N = G/G0. ThusM has a non-trivial
connected coveringM such thatM/(G/G0) = M. In general, if a manifoldM has a
connected coveringM such that there exists a discrete groupD acting freely and properly
discontinuously onM, with M/D = M, then we shall say thatM has aD-covering. The
above remarks yield the following simple but crucial result.

Theorem 1. For a Lie groupG to occur as a holonomy group of a connection on a principal
bundle overM, it is necessary forM to have a(G/G0)-covering.

For example, we have Pin(2)/Spin(2) = Z2, and soM must have adouble cover
(M/Z2 = M) if there is to be any chance of constructing overM, a bundle with a connection
having Pin(2) holonomy. The obvious way for this condition to fail is forπ1(M) to be of
odd order, but that is not the only way: for example, the Poincaré homology sphere [17] has
a fundamental group of order 120, but it has no double cover. For another example, consider
Q8 ·SU(2), whereQ8 is the quaternionic group of order 8, andQ8∩SU(2) = {±I2}. Here
(Q8 · SU(2))/SU(2) = Z2 × Z2 and in factQ8 · SU(2) is the linear holonomy group of
Hitchin’s [18] manifoldK3/[Z2× Z2].

We refer to the condition thatM should have a(G/G0)-covering as theholonomy
covering conditionfor the pair(M,G). The key question now, of course, is that of whether
this condition issufficient as well as necessary. In general, the answer is ‘no’; but for a
surprising number of groups, it is ‘yes’. We have the following result.

Theorem 2. Let M be a connected, paracompact manifold of dimension at least 2, and
let G be a compact Lie group having a presentation of type I withH cyclic, or of type I
with H intersectingG0 trivially, or of type II. There exists a principal fibre bundle overM
with a connection having holonomy group isomorphic toG if and only if M satisfies the
holonomy covering condition with respect toG.

The proof is somewhat similar to that of theorem 3, and so we shall omit it. Note that the
restriction on the dimension is understandable if we recall that the curvature forms, being
two-forms, must vanish ifM is one-dimensional, and so only finite groups are possible (in
the compact case) ifM is one-dimensional.

This result settles our question for the most interesting groups of type I and for all
groups of type II. Notice that since every compact connected group is of type I, theorem 2
is a generalization of the statement [13] that every such group occurs as a holonomy group
over any paracompact connected manifold with dimension at least two. Similarly, every
finite group is of type I and can be handled by this theorem. Again, the orthogonal group
O(2n) (type II) occurs as a holonomy group in some bundle overanyM which has a double
cover, whether it be orientable or not, provided that it is paracompact and dim(M) > 2.

In view of theorem 2, we concentrate henceforth on disconnected groups of type III.
We begin with a technique which allows us to deal with certain pairs(M,G) whenG is of
type III.

4. Antipodal functions and pin-like groups

As we explained in section 2, we shall concentrate on the groups Pin(2n),Z4 · U(n) and
Z4 · SO(2n), for all n > 1. All of these arePin-like groups, in the following sense: all
have the form

G = G0 ∪ γ ·G0
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where Ad(γ ) induces some specific outer automorphism of order 2 onG0, which fixes
a distinguished element−1 in the centre ofG0, and whereγ 2 = −1. We denote the
outer automorphism byg→ g; recall that this is conjugation bye1 for Spin(2n), complex
conjugation forU(n) and conjugation byA2n for SO(2n). Note that whenn is even,
Z4 · SU(n) is well defined and Pin-like.

For Pin-like groups, we have the following construction. For all of these groups, the
holonomy covering condition is just the requirement thatM should have a double cover,M.
Thus, we assume thatM exists; letµ be the fixed-point-free involution onM generating
Z2 such thatM/Z2 = M. Let G be any Pin-like group. A smooth mapf : M → G0 will
be called anantipodal functiononM with respect toG0 if for all x ∈ M

f (µ(x)) = −(f (x))−1.

To understand the reason for the terminology, we takeM to be the real projective spaceRPn
and letG be Pin(2). ThenM is the sphereSn, µ is the antipodal map andG0 is Spin(2),
in which every element satisfies(g)−1 = g. Furthermore, Spin(2) is homeomorphic to the
one-sphere and the mapa : g → −g is antipodal onS1; hence an antipodal mapf in this
case is one which makes the following diagram commute

Sn
f−→ S1

µ ↓ ↓ a

Sn
f−→ S1

This is the usual definition of an antipodal function from one sphere to another [17].
If they exist, antipodal functions are very useful, as the following theorem shows.

Theorem 3. LetM be a connected, paracompact manifold of dimension at least 2, and let
G be a Pin-like group. Suppose thatM has a non-trivial double coverM, and that there
exists an antipodal function onM with respect toG0. Then, there exists a principal fibre
bundle overM with a connection having holonomy group isomorphic toG.

Proof. SetP = M × G0, and define an action ofG on P as follows. Recall that every
element ofG is either of the formg ∈ G0 or of the formγg ∈ γ ·G0. For any(x, s) ∈ P ,
let Rg andRγg be defined by

Rg : (x, s)→ (x, sg)

Rγg : (x, s)→ (µ(x), f (x)sg)

whereµ is the canonical involution onM andf is the given antipodal function onM. We
claim that this is a right action byG: that is, if g1 and g2 are any elements ofG0, then
Rg1Rg2 = Rg2g1, Rγg1Rg2 = Rg2γg1, Rg1Rγg2 = Rγg2g1 andRγg1Rγg2 = Rγg2γg1. The first
and third are clear. For the second

Rγg1Rg2(x, s) = Rγg1(x, sg2) = (µ(x), f (x)sg2g1)

which is the effect ofγ g2g1; this is correct, sinceγ g2g1 = g2γg1. Again, we have

Rγg1Rγg2(x, s) = Rγg1(µ(x), f (x)sg2) = (x, f (µ(x))f (x)sg2g1)

which, by definition off , is (x,−sg2g1); this is correct, sinceγg2γg1 = γ 2g2g1 = −g2g1.
Thus, the action ofG is indeed to the right and, sinceµ has no fixed point, this action
is free. RegardingM as P/G0, we see thatP/G = M. Let V be an open set inM,
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and σ a local section ofM as a locally trivial bundle overM. If π : P → M is the
projection,π−1(V ) is the disjoint union ofσ(V ) × G0 with µσ(V ) × G0. That is, every
point in π−1(V ) is either of the form(σ (x), g) or of the form(µσ(x), g), wherex ∈ V
andg ∈ G0. Define a mapφ : π−1(V )→ G by

φ : (σ (x), g)→ f (σ(x))g

φ : (µσ(x), g)→ γg.

We leave it to the reader to confirm that this defines an isomorphism ofπ−1(V ) with V ×G,
so thatP is locally trivial overM. ThusP is a principalG bundle overM. Now the Hano–
Ozeki–Nomizu theorem [13] states that ifP is a connectedG bundle over a paracompact
baseM with dim(M) > 2, then there exists a connection onP with holonomy group
isomorphic toG. As P is evidently connected in our case, the proof is now complete.�

A careful examination of the proof reveals the reasons for the fact that types I and II
are more tractable than type III. Consider, for example, the type I groupZ4 · SU(2) =
SU(2) ∪ z · SU(2). Here we can setP = M × SU(2) and define the action ofz by

Rz : (x, s)→ (µ(x), ts)

where t is an element ofSU(2) such thatt2 = −I2; following the proof of theorem 3,
one now can prove theorem 2 in this case. Consider, on the other hand, the type II group

O(2) = SO(2) ∪ A · SO(2), whereA =
(

1 0
0 −1

)
. Here we setP = M × SO(2) and

define the action ofA by

RA : (x, s)→ (µ(x), s)

wheres = Ad(A)s. One can now prove theorem 2 for type II. However, if we attempt to
combine these ideas to deal with the type III group Pin(2) = Spin(2) ∪ e1 · Spin(2), we
find that (x, s)→ (µ(x), ts) (for somet ∈ Spin(2) satisfyingt2 = −1) doesnot define an
action bye1 : for (x, s)→ (µ(x), ts)→ (x, tts) = (x, s) is the identity map, but(e1)

2 6= 1.
Antipodal functions are designed to deal with this problem.

Let us consider an example where theorem 3 can be used. Leta1, a2, a3 be linearly
independent vectors inR3, with a1 orthogonal toa2 and a3 and let t1, t2, t3 be the
corresponding translations. Letα be the affine map onR3 defined bya1 → a1, a2 →
−a2, a3 → −a3, followed by translation througha1/2. Then the group0 generated by
t1, t2, t3 andα acts freely and properly discontinuously onR3, andR3/0 is a compact flat
manifold [19]. This manifold is a three-dimensional version of the Klein bottle; it can also
be regarded asT 3/Z2, whereT 3 is the 3-torus. We claim thatevery group of the form
Z4 · U(n) and every group of the formZ4 · SO(2n), occurs as a holonomy groupon some
bundle overR3/0. To prove this we must exhibit the corresponding antipodal functions on
T 3, the double cover ofR3/0.

Let x, y, z be the usual coordinates onR3, and takea1, a2, a3 to be the corresponding
orthonormal basis. For each of the groupsU(n), SO(2n) (n even) andSO(2n) (n odd) we
define a functionf̂ on R3, taking its values in those groups, as follows

f̂ (x, y, z) = exp[2π ix] · In for U(n)

= diag

[(
cos 2πx − sin 2πx
sin 2πx cos 2πx

)
,

(
0 −1
1 0

)
,

(
0 −1
1 0

)
, . . .

]
for SO(2n) n even

= diag

[(
cos 2πx − sin 2πx
sin 2πx cos 2πx

)
,

(
cos 2πx − sin 2πx
sin 2πx cos 2πx

)
, . . .

]
for SO(2n) n odd.
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Now clearlyt∗i f̂ = f̂ for all i and eachf̂ , so we obtain three projected functionsf on T 3.
Let µ be the involution onT 3 induced byα. We leave it to the reader to verify, using the
specific forms we have given earlier for the outer automorphisms (complex conjugation for
U(n), conjugation byA2n for SO(2n)) that all three functionsf satisfy the defining relation
for antipodal functions. Then theorem 3 gives usZ4 · U(n) andZ4 · SO(2n) as holonomy
groups on bundles overR3/0. The quantum mechanics of gauge fields on manifolds of this
kind has recently been discussed,assumingthe existence of Alice gauge configurations, in
an interesting paper by Anandan [14].

For certain groups, an even simpler way of constructing antipodal functions is possible.
Suppose thatf : M → G0 is theconstantfunction,f (x) = φ for all x. Thenf is antipodal
if G0 contains an elementφ such thatφ = −(φ)−1. Such an element may be called an
antipodal constant. The problem here is that not everyG0 has an antipodal constant. We
have the following result.

Theorem 4. The group Spin(2n) has antipodal constants if and only ifn > 2. The group
U(n) has antipodal constants if and only ifn is even. The groupSO(2n) has no antipodal
constants, for anyn.

Proof. Let Spin(n) be defined, as usual, in terms of the Clifford algebra generated by{ei},
i = 1 . . . n. If n > 3, Spin(n) contains an elemente2e3; settingφ = e2e3, we have

φφ = −e2e3e1e2e3e1 = −1

so φ is antipodal. By contrast, in Spin(2), every element satisfiesgg = 1, so there is no
antipodal constant. ForU(n), if n is even we can set

φ = diag

[(
0 −1
1 0

)
,

(
0 −1
1 0

)
, . . .

]
and this is antipodal; this also works forSU(n), n even. However, ifn is odd then an
antipodal constantφ in U(n) would satisfyφφ = −In and soδ = det(φ) would satisfy
δδ = −1, which is impossible. ForSO(2n), we use de Siebenthal’s theorem [15] on
conjugacy in compact disconnected Lie groups: this states that ifci ·G0 is any connected
component of such a group, then each element ofci ·G0 can be expressed asgcitg−1 for
someg ∈ G0, wheret is an element of a maximal torus of the centralizer ofci in G0. Let
φ be an antipodal constant inSO(2n); thenφA2nφA2n = −I2n. Now the matrixψ = φA2n

satisfiesψ2 = −I2n, andψ is an element of the connected componentA2n · SO(2n) in
O(2n). Thus, for someB in SO(2n)

ψ = BA2nDB
−1

whereD belongs to a maximal torus of the centralizer ofA2n in SO(2n). If n is even, this
centralizer consists of matrices of the form diag[±1, E], whereE belongs toO(2n − 1),
and soD2 = diag[1, E2]. But sinceψ2 = −I2n, and (A2nD)

2 = A2
2nD

2 = D2, we have
D2 = −I2n, a contradiction. A similar contradiction arises ifn is odd. This completes the
proof. �

Corollary 4.1. Let M be any connected, paracompact manifold of dimension at least two
and letG be Pin(n), n > 3, or Z4 · U(n), n even, orZ4 · SU(n), n even. There exists a
principal bundle overM with a connection having a holonomy group isomorphic toG if
and only ifM has a non-trivial double cover.
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Thus, for example, every Pin(n), n > 3, occurs as a holonomy group over any real
projective spaceRPm, and every Pin-like group occurs as a holonomy group over the flat
manifoldR3/0 described earlier.

Useful though they are, antipodal functions are not always easily constructed, and in fact
in some cases they do not exist. TakeM = RPn andG = Pin(2): then, as we explained
earlier, an antipodal function in our sense is an antipodal map, in the usual sense [17] from
Sn to S1. However, the Borsuk–Ulam theorem [17] is precisely the statement that antipodal
maps fromSn to Sm, n > m, do not exist. Hence, the present method fails in this case.

We can summarize as follows. The method of antipodal functions has allowed us to
complete the holonomy existence theory of Pin(n), n > 3, of Z4 · U(n), n even and of
Z4 ·SU(n), n even; in all these cases, the holonomy covering condition is sufficient as well
as necessary. The method also has the following property: if it can be made to work for
Pin(2), then it can be made to work forZ4 ·U(n), n odd and forZ4 · SO(2n). In this way,
we were able to exhibit these groups as holonomy groups over the flat compact manifold
R3/0. Thus, Pin(2) is the crucial case. Unfortunately, the method can definitely fail for
Pin(2): the Borsuk–Ulam theorem implies that it must fail forM = RPn.

5. Stronger covering conditions

Recall [19] that the quaternionic groups are finite groupsQ4n of order 4n, n > 1, generated
by two elementsa andb satisfying

an = b2 bab−1 = a−1.

These relations implyb4 = 1, so we defineQ4 = Z4. We shall say thatM has a (non-trivial)
quaternionic coverof order 4n if there exists a connected manifoldM on whichQ4n acts
freely, with M/Q4n = M. The existence of a quaternionic cover is a stronger condition
than the existence of a double cover, in the sense that the former entails the latter, but not
the reverse. We have the following result.

Theorem 5. LetM be a connected, paracompact manifold, of dimension at least two, with
a quaternionic cover of order 4n. Let G be Pin-like, and suppose thatG0 contains an
elementp2n such that(p2n)

n = −1 andp2n = (p2n)
−1. Then there exists a principal bundle

overM with a connection having a holonomy group isomorphic toG.

Proof. Let Q4n act onM, the quaternionic cover, through mapsa : M → M and
b : M → M satisfying the above relations. Now define aZ2n action onM ×G0 by

(x, s)→ (a(x), p2ns).

This action is evidently free. We denote the elements ofP = [M×G0]/Z2n by pairs{x, s}.
Now define an action byG on P as follows. Ifg ∈ G0, set

Rg : {x, s} → {x, sg}
while if γg ∈ γ ·G0, set

Rγg : {x, s} → {b(x), sg}.
This is well defined, for{a(x), p2ns} is mapped byRg to {a(x), p2nsg} = {x, sg} and

Rγg{a(x), p2ns} = {ba(x), p2nsg} = {a−1b(x), (p2n)
−1sg}

which is {b(x), sg}. Now we have

Rγg1Rg2{x, s} = {b(x), sg2g1}
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as expected if the action ofG is to the right, sinceg2γg1 = γ g2g1. Similarly

Rγg1Rγg2{x, s} = Rγg1{b(x), sg2} = {b2(x), sg2g1} = {an(x), sg2g1}
= {a2n(x), (p2n)

nsg2g1} = {x,−sg2g1}
in agreement withγg2γg1 = γ 2g2g1 = −g2g1. ThusG acts to the right. IfRg had a
fixed point, so would some non-trivial power ofa; similarly, the fact that no other element
of Q4n (except the identity) has a fixed point onM means thatRγg has no fixed point
on P . It is straightforward to show thatP/G = M, and thatP is locally trivial. Since
M ×G0 is connected, so is its quotient,P . The Hano–Ozeki–Nomizu theorem now yields
the existence of the desired connection, and this completes the proof. �

Obviously, if n = 1, we can takep2 = −1 for every Pin-like group, so we have the
following corollary.

Corollary 5.1. Let M be a connected, paracompact manifold, of dimension at least two,
with a connected coverM such thatM/Z4 = M. Then any Pin-like group occurs as a
holonomy group of some connection on some principal bundle overM.

Again, if we define

p2n = diag

[(
cos(π/n) − sin(π/n)
sin(π/n) cos(π/n)

)
,

(
cos(π/n) − sin(π/n)
sin(π/n) cos(π/n)

)
, . . .

]
thenp2n is an element ofSO(2m), for anym > 1. Letm be odd; thenA2mp2nA

−1
2m = p−1

2n
and(p2n)

n = −I2m. Thus, we have the following consequence of theorem 5.

Corollary 5.2. Let M be a connected, paracompact manifold, of dimension at least two,
with a quaternionic coverM of any order. Then, there exists a principal bundle overM

with a connection having a holonomy group isomorphic toZ4 · SO(2m), for any oddm.
(Note that this includesZ4 · SO(2) = Pin(2).)

Notice that the second corollary cannot be derived from the first, since the existence of
a quaternionic cover does not (always) imply the existence of aZ4 cover.

These results can be used in cases where the method of antipodal functions fails. For
example, corollary 5.1 implies that there is a principal bundle over the lens space [19]S3/Z4

with a connection having Pin(2) as holonomy group. The double cover here isRP 3, and it
is possible to extend the Borsuk–Ulam argument to show that there isno antipodal function
on RP 3.

An interesting source of examples of manifolds with quaternionic covers is provided
by the homogeneous, locally isotropic Riemannian three-folds. If they are not simply
connected, such manifolds [19] are either flat and of the formR × T 2, R2 × S1, T 3, or
they are of the formS3/0, where0 is a finite group of unit quaternions. ThusS3/Q4n is
a homogeneous, locally isotropic Riemannian manifold—and therefore a possible candidate
for the spatial sections of a cosmological model—for alln, and Pin(2) occurs as a holonomy
group over all of these spaces. The methods of this section, combined with results to be
given later, can actually be used to give a complete analysis of Alice cosmologies with
physically interesting disconnected gauge groups.

In short, then, we find that stronger covering conditions can be sufficient to ensure the
existence of connections with Pin-like holonomy groups. These conditions, however, are
not necessary, for the manifoldR3/0 discussed earlier has no quaternionic cover, and yet
every Pin-like group occurs as a holonomy group overR3/0. On the other hand, as we
shall see, the holonomy covering condition (in this case, the existence of a double cover)
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definitely fails to be sufficient in some cases. Thus, covering conditions alone cannot always
characterize the manifolds on which a given disconnected group occurs as a holonomy group.

6. Reduction to a quotient

If G is a disconnected Lie group andN is a connected normal subgroup ofG, thenG/N is
another disconnected group. If one can solve the problem of exhibitingG as a holonomy
group over a given manifold, one might hope to use this to solve the analogous problem
for G/N , or vice versa. In this section we shall explain the relevant techniques through a
specific example.

Theorem 6. Let M be a paracompact manifold. There exists a principal fibre bundle over
M with a connection having holonomyZ4 ·U(n), n odd, if and only if there exists a bundle
overM with a connection having holonomy Pin(2).

Proof. Let P be a principal bundle overM with a connection having holonomy group
isomorphic toZ4 ·U(n), n odd. By the holonomy reduction theorem [13], we may assume
without loss of generality that the structural group ofP is Z4 ·U(n). Since the determinant
of the complex conjugate of a matrix is the complex conjugate of the determinant,SU(n)

is normal inZ4 · U(n), and [Z4 · U(n)]/SU(n) is isomorphic to Pin(2). (This is where
we use the fact thatn is odd, for in that caseSU(n) does not contain(−In) and soZ4

andSU(n) intersect trivially; thus, when we take the quotient,Z4 is not affected. Ifn is
even, then in fact [Z4 ·U(n)]/SU(n) = O(2), not Pin(2). Thus, corollary 4.1 is not useful
here.) It is not difficult to show thatQ = P/SU(n) is a principal Pin(2) bundle overM,
and that the projectionP → Q is a bundle homomorphism. The given connection onP

pushes forward to a connection onQ, and the relevant connection mapping theorem [13]
states that the group homomorphismZ4 · U(n) → Pin(2) maps the holonomy group of
the connection onP onto the holonomy group of the connection onQ. The latter must
therefore be isomorphic to Pin(2). Conversely, letQ be a bundle overM with a connection
having holonomy Pin(2); again, we may take it that Pin(2) is the structural group ofQ.
Set P̂ = Q× SU(n), n odd. Now Spin(2) contains the cyclic groupZn, and sinceQ is a
Pin(2) bundle, we have a fixed-point-free action to the right byZn onQ. Of courseZn is
also the centre ofSU(n). Thus if a generatesZn, it has a well defined action on̂P given
by

(q, s)→ (qa, a−1s)

whereq ∈ Q and s ∈ SU(n). SetP = P̂ /Zn and define an action ofZ4 · U(n) on P as
follows. Every element ofZ4 · U(n) is either of the formg in U(n) or γg in γ · U(n).
Eachg in U(n) may be expressed asut , whereu ∈ U(1) and t ∈ SU(n). Of course, this
expression is not unique, sinceut = (au)(a−1t) for any a ∈ Zn. Then we set (recalling
thatU(1) = Spin(2))

Rg : {q, s} → {qu, st}
where {q, s} denotes the projection inP of (q, s) in P̂ . This is well defined, since
{qua, sa−1t} = {(qu)a, a−1(st)} = {qu, st}. Next, we define

Rγg : {q, s} → {qγ u, st}
and this too is well defined since{qaγ u, (a)−1st} = {qγ ua, (a)−1st}; we abuse the notation
by usingγ to denote the canonical element of order 4 in bothZ4 · U(n) and Pin(2). As
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usual, we must check that the action ofZ4 · U(n) is free and to the right. Ifg = ut and
if {q, s} is a fixed point ofg, then in P̂ we must have(qu, st) = (qam, a−ms) for some
integerm, and since Spin(2) acts freely onQ, this meansu = am, t = a−m and sog = 1.
Similarly, γg has no fixed point. To see that the action is to the right, we have, ifg1 = u1t1
andg2 = u2t2

Rγg1Rg2{q, s} = Rγg1{qu2, st2} = {qu2γ u1, st2t1} = {qγ u2u1, st2t1}
which indeed is the effect ofg2γg1 = γ g2g1 = γ u2u1t2t1. Again

Rγg1Rγg2{q, s} = {qγ u2γ u1, st2t1} = {q(−1)u2u1, st2t1}
consistent withγg2γg1 = −g2g1 = (−u2u1)t2t1. Clearly

P/[Z4 · U(n)] = Q/Pin(2) = M
and one can show that the local triviality ofQ implies that ofP . ThusP is a principal
Z4 · U(n) bundle overM. As we are assuming thatQ is the holonomy bundle [13] of
some connection,Q must be connected; hence the same is true ofP̂ and so ofP . As Q
has a connection which is not flat, dim(M) > 2. The Hano–Ozeki–Nomizo theorem now
completes the proof. �

From a physical point of view, this result is of interest because, in the standard model,
the unbroken symmetry group isU(3). The corresponding Pin-like group is of course
Z4 · U(3). We now see that, in order to find examples of manifolds with principal bundles
on whichZ4 · U(3) occurs as a holonomy group, we need only to study the same problem
for the much simpler group Pin(2).

An instructive and very simple example of a manifold on which Pin(2) occurs as a
holonomy group is the real projective spaceRP 2. The bundle of orthonormal frames over a
two-dimensional Riemannian manifoldM, denotedO(M), is anO(2) principal bundle over
M. We say thatM is a Pin manifold if there exists at least one Pin(2) bundle Pin(M) over
M which is also a non-trivialZ2 bundle overO(M), so that Pin(M)/Z2 = O(M) just as
Pin(2)/Z2 = O(2). If M is orientable then Pin(M) always exists, but this is not necessarily
so ifM is not orientable. IfM is neither orientable nor flat, then the holonomy group of the
linear connection onO(M) is preciselyO(2); thus, if M is a Pin manifold, the holonomy
group of the pulled-back connection on Pin(M) must be Pin(2). This immediately gives
us many examples: for example, the Klein bottle with metric slightly perturbed (so that
it is not flat) is a Pin manifold, and so the above construction gives us a bundle with a
connection having holonomy Pin(2).

Now in factRP 2 itself is not a Pin manifold [20]. Despite this, one can still construct
other principal bundles overRP 2 with connections having Pin(2) as a holonomy group.
These facts can be seen in an elementary way as follows. ClearlySO(3) acts transitively
onRP 2, with isotropy groupO(2), soRP 2 = SO(3)/O(2). In factSO(3) acts transitively
on O(RP 2), with isotropy groupZ2 (generated by the matrix diag(1,−1,−1)). Thus
O(RP 2) = SO(3)/Z2. Now if O(RP 2) lifted to a Pin(2) bundle overRP 2, we would
be able to exhibit Pin(2) as a subgroup ofSO(3), which is not possible, and this is
a direct proof of the fact thatRP 2 is not Pin. WhileSO(3) does not contain Pin(2)
however, Spin(3) certainly does, and indeed Spin(3) is a Pin(2) bundle overRP 2: we have
Spin(3)/Pin(2) = SO(3)/O(2) = RP 2. This is of course a version of the familiar Hopf
bundle [21] overS2. As Spin(3) is connected andRP 2 is paracompact, we see that there is
a connection on Spin(3) (as a bundle) with holonomy Pin(2); and so Pin(2) does occur as
a holonomy group overRP 2, despite the fact thatRP 2 is not a Pin manifold. In fact, there
are infinitely many examples of this kind. For letr be any odd integer. Then Pin(2)/Zr is
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again isomorphic to Pin(2), and Spin(3)/Zr is a connected Pin(2) bundle overRP 2; thus
for each odd integer we obtain a distinct principal bundle, each one having a connection
with holonomy Pin(2). (This does not work ifr is even, for in that case Pin(2)/Zr = O(2);
we haveO(RP 2) = Spin(3)/Z4.) In all of these cases, theorem 6 gives us bundles over
RP 2 with connections having holonomyZ4 · U(m), for all oddm. Notice thatRP 2 has
no quaternionic cover, and recall that its double cover,S2, hasno antipodal functions with
respect to Spin(2).

We may summarize as follows. The problem of constructing a bundle with a connection
having a holonomy group isomorphic toG is closely related to the analogous problem for
G/N , whereN is normal inG. We have found, for example, that solving this problem for
Pin(2) allows us to solve it for the infinite family of groupsZ4 · U(m) with m odd.

7. Cases where Pin(2) cannot be a holonomy group

Thus far, we have concentrated on using techniques which allow us to exhibit disconnected
groups as holonomy groups of connections over manifolds satisfying the holonomy covering
condition. In some cases, however, all such techniques must fail, since it is possible to prove
that a specific disconnected groupcannot occur as a holonomy group over some manifold,
even though the latter does satisfy the holonomy covering condition. We have the following
result.

Theorem 7. Let M be a connected paracompact manifold of dimension at least two, and
suppose thatM has a double cover. Assume further that the first and second homology
groups (with integer coefficients) of every double cover are finite. Then there exists a
principal bundle overM with a connection having a holonomy group isomorphic to Pin(2)
if and only if M admits a quaternionic cover.

Remark. Note that the assumptions require the finiteness of the first two homology groups
of every double cover. A manifold can have two distinct double covers, one having
H1(M,Z) andH2(M,Z) finite and the other not. LetV be the compact orientable flat
manifold [19] of the formT 3/[Z2 × Z2], which hasV = T 3/Z2 as double cover and
considerM = V ×RP 3. This manifold hasV ×RP 3 andV ×S3 as distinct double covers.
NowH1(V ,Z) is finite, and so areH1(V ×S3,Z) and (by Poincaŕe duality and the K̈unneth
formula)H 2(V × S3,Z), the second cohomology group; thusH2(V × S3,Z) is also finite.
But H1(V × RP 3,Z) is infinite, since [19]H1(V ,Z) is infinite.

Proof. The sufficiency of the existence of a quaternionic cover is given by corollary 5.2.
Suppose on the other hand thatP is a bundle overM with a connection having holonomy
Pin(2). By the holonomy reduction theorem [13], we may take it thatP is a Pin(2) bundle,
and thatP is a holonomy bundle of the given connection; henceP must be connected, and
the same is true ofM = P/Spin(2). ThusM is a non-trivial double cover ofM, and so,
by assumption,H1(M,Z) andH2(M,Z) are finite. Hence, in particular, they are finitely
generated, and so, by the universal coefficient theorem [21]H 2(M,Z) is just F2 ⊕ T1,
whereF2 is the free part ofH2(M,Z) andT1 is the torsion ofH1(M,Z). ThusH 2(M,Z)
is finite and isomorphic toH1(M,Z). Now principalU(1) bundles overM are classified by
H 2(M,Z); the element ofH 2(M,Z) corresponding to a particularU(1) bundle is just the
first Chern class [22] of that bundle. In our case, theU(1) bundles overM are constructed
from the finite groupH1(M,Z) as follows. LetW be the fundamental group ofM, and let
W ′ be its commutator subgroup. SetM ′ = M̃/W ′, whereM̃ is the universal cover ofM, so
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thatM = M̃/W = M ′/H1(M,Z). Now H1(M,Z) is a finite Abelian group, a product of
finite cyclic groups. FactoringM ′ by all but one of these cyclic groups, we obtain a ‘cyclic
cover’Mc, that is, a manifold such thatMc/Zr = M. For example, ifπ1(M) = Z2 × Z2,
thenH1(M,Z) = Z2 × Z2, and it is clear thatM has threeZ2 covers. Given a specific
cyclic coverMc, we letZr act onMc × U(1) by (m, u)→ (a(m), au), wherea generates
Zr and then [Mc × U(1)]/Zr is a non-trivialU(1) bundle overM. All of the non-trivial
U(1) bundles overM are constructed in this way. Thus, each element of our bundleP has
the form {m, u}, wherem ∈ Mc, a certain cyclic cover ofM, u ∈ U(1), and the brackets
indicate the factoring by a particular cyclic groupZr such thatMc/Zr = M. Let µ be the
involution onM such thatM/Z2 = M; thenµ is covered by some fixed-point-free map
b : Mc → Mc. Setting Pin(2) = Spin(2)∪ γ ·Spin(2), we see that the right action ofγ on
P must take the formRγ {m, u} = {b(m), u∗} for someu∗. Let y, the projection ofm to
M, be fixed. Lettingu vary, we obtain a mapfy which is defined byfy(u) = u∗; as the
notation suggests,fy may depend ony. Now for anyv ∈ U(1), we havevγ = γ v, and so
{b(m), (uv)∗} = {b(m), u∗v}, hencefy(uv) = fy(u)v for all u, v. But by definition of the
quotient,

{b(m), fy(u)} = {ba(m), fy(au)} = {ba(m), afy(u)} = {aba(m), fy(u)}
henceaba = b and sobab−1 = a−1. Evidentlyb2 commutes witha and covers the identity
map onM, and thusb2 = ap for some integerp. Thus, we have shown thatMc admits
a fixed-point-free action by a group satisfyingbab−1 = a−1 and b2 = ap, such that the
quotient isM; that is, we have shown thatM has a quaternionic cover, provided thatp 6= 0.
To rule out this last possibility, we note that, with the above notation,fy(uv) = fy(u)v

implies fy(v) = fy(1)v, or fy(v) = f (y)v if we definefy(1) = f (y). Then

Rγ 2{m, u} = Rγ {b(m), f (y)u} = {b2(m), f (µ(y))f (y)u} = {m,−u}.
Hence ifp = 0, so thatb2 is the identity map, we see thatf must be an antipodal function
onM. Now recalling thatM is connected, lety be any point inM and letc be a curve from
y to µ(y), so thatµ◦c is a curve fromµ(y) to y. If we usef to attach an element ofU(1)
to each point onc, then clearly the relationf (µ(y)) = −f (y) implies that any element of
U(1) which fails to occur alongc must occur alongµ ◦ c. Thusf defines a map fromM
to the circleS1, and this map is not homotopic to the trivial map. Now homotopy classes
of maps fromM to S1 are classified [23] by the cohomology groupH 1(M,Z). But since
we are assuming thatH1(M,Z) the corresponding homology group is finite,H 1(M,Z) = 0
and so every mapM → S1 is homotopic to the trivial map. This contradiction completes
the proof. �

If M is orientable and three-dimensional, then Poincaré duality gives us the finiteness
of H 2(M,Z) directly from that ofH1(M,Z), and so we have the following result.

Corollary 7.1. LetM be any orientable paracompact 3-fold withH1(M,Z) finite for each
double coverM. Then Pin(2) occurs as a holonomy group overM if and only if M has a
quaternionic cover.

For example, the spherical space formS3/Õ48, where Õ48 is the binary octahedral
group [19], satisfies the holonomy covering condition for Pin(2) (its double cover isS3/T̃24,
where T̃24 is the binary tetrahedral group); but as it has no quaternionic cover, and since
H1(S

3/T̃24,Z) = Z3, Pin(2) cannot occur as a holonomy group in this case. This is our
first example in which the holonomy covering condition definitely fails to be sufficient.

Another interesting source of examples is provided by the connected compact simply
connected Lie groupsG. Here the second homotopy groupπ2(G) always vanishes, and so
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H2(G,Z) = 0 by the Hurewicz isomorphism theorem [21]. Thus if0 is any finite subgroup
of G, thenH1(G/0,Z) andH2(G/0,Z) are finite, and so we have the following result.

Corollary 7.2. Let G be a connected, compact, simply connected Lie group, and let0 be
a finite subgroup ofG. Then Pin(2) occurs as a holonomy group overG/0 if and only if
0 has a normal subgroupN such that0/N = Q4n for somen > 1.

For example, each groupSO(n), n > 3, satisfies the holonomy covering condition
for Pin(2), but Pin(2) does not occur as a holonomy group over any such manifold. The
same is true of the groupsSO(4n)/Z2 = Spin(4n)/[Z2 × Z2], but Pin(2) does occur over
SO(4n+2)/Z2 = Spin(4n+2)/Z4, since Spin(4n+2) is theQ4 = Z4 cover of this group.

Finally, the simplest manifolds satisfying the holonomy covering condition for all of
the Pin groups are the real projective spacesRPm. When n > 3, Pin(n) is treated in
corollary 4.1. We saw in section 6 that Pin(2) occurs as a holonomy group overRP 2

(which is not affected by theorem 7 sinceH2(S
2,Z) is not finite). Form > 3, H1(S

m,Z)
andH2(S

m,Z) are both trivial, and so theorem 7 covers the remaining cases, and we obtain
the following statement.

Corollary 7.3. There exists a principal bundle overRPm,m > 2, with a connection having
holonomy group isomorphic to Pin(n), n > 2, if and only if eithern > 3, or n = m = 2.

Thus, for example, if the topology of spacetime isR×RP 3, then ‘Alice electrodynamics’
[7] based on the Pin(2) subgroup of Spin(10) is not possible, despite the fact that the
holonomy covering condition is satisfied—an unexpected result. Note that theorem 6 yields
a similar conclusion for all of the groupsZ4 · U(n) with n odd.

8. Conclusion

Connections with disconnected holonomy groups correspond to an interesting type of non-
perturbative gauge configuration. As with monopoles, instantons and so on, the topology
of the underlying spacetime (or generalized spacetime) plays a central role in determining
whether disconnected gauge holonomy groups are possible in any given case. For some
groups (such as Pin(n), n > 3) the obvious necessary condition also suffices, but for others
(such as Pin(2) andZ4 · U(n), n odd) it does not.

In this work we have presented a variety of techniques for constructing gauge
configurations with disconnected holonomy groups. These allow us to deal with all
disconnected groupsG of type II, and many groups of type III. Using these methods,
one can give a complete analysis of the existence of such gauge configurations over all
homogeneous, locally isotropic Riemannian manifolds, for physically interesting subgroups
of grand unification groups such as Spin(10); that is, we can give an existence theory for
‘Alice cosmology’. This will be presented elsewhere.
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